117 research outputs found

    Urea Functionalized Multiwalled Carbon Nanotubes As Efficient Nitrogen Delivery System For Rice

    Get PDF
    This paper utilized urea functionalized multiwalled carbon nanotubes fertilizer as plant nutrition for rice to understand fully their mechanism of interaction. Surface modification of multiwalled carbon nanotubes was treated by nitric acid at different reflux times. The individual and interaction effects between the design factors of functionalized multiwalled carbon nanotube amount and functionalization reflux time with the corresponding responses of nitrogen uptake and nitrogen use efficiency were structured via the Response Surface Methodology based on five-level central composite design. The urea functionalized multiwalled carbon nanotubes fertilizer with optimized 0.5 weight% functionalized multiwalled carbon nanotubes treated at 21 h of reflux time achieve tremendous nitrogen uptake at 1180 mg/pot and NUE up to 96%. The FT-IR results confirm the formation of acidic functional groups of functionalized MWCNTs and UF-MWCNTs. The morphological observation of transmission electron microscopy shows extracellular regions to be the preferred localization of functionalized multiwalled carbon nanotubes in fresh plant root cells independent of their size and geometry. Penetration into the plant cell results in breaching of graphitic tubular structure of functionalized multiwalled carbon nanotubes with their length being shortened until ∼50 nm and diameters becoming thinner until less than 10 nm. The capability to agglomerate after translocation into the plant cells alarms potential cytotoxicity effect of functionalized multiwalled carbon nanotubes in agriculture. These work findings have suggested using urea functionalized multiwalled carbon nanotubes for effective nutrient delivery systems in rice plant

    Top spray fluidized bed granulated paddy urea fertilizer

    Get PDF
    Top spray granulation process is a common technique used widely in pharmaceutical, food and special chemical modification for fertilizer manufacturing. Nevertheless, there is still a lack of studies regarding to the description of controlled parameters with dynamic correlation in targeting to produce urea granules. Thus, this research was carried out to introduce the crucial applied process parameters using top spray technique for paddy urea fertilizer production. The acquisition process parameter readings were verified by obtained yield of urea granules (UG) which featured as an optimum particle diameter size from 2 mm to 6 mm with reasonable hardness (crush strength) in range 2.0 kg/granule to 4.0 kg/granule, these criteria were required as a slow - release mechanism during soil adsorption interaction in paddy field to reduce amount of fertilizer consumption. Three significant parameters have been selected namely as air inlet temperature, the viscosity of binder solution and rate of top spraying from starch liquid binder to generate greater UG size from wet granulation interaction with smooth coalescence and consolidation growth . The data classification was screened by One-Factor-at-a-Time (OFAT) 101 method and supported by 2 levels and 3 factors (23 ) of full factorial design for clear description to vindicate the critical parameter required during urea granulation using fluidized bed granulator corresponds to low energy consumption and economical process. The obtained parameter readings and findings of UG features were useful to be applied further for detail investigation on next stage regarding to agglomeration profile and mechanism using CCD camera and PDA monitoring devices

    RICO-MR: An Open-Source Architecture for Robot Intent Communication through Mixed Reality

    Full text link
    This article presents an open-source architecture for conveying robots' intentions to human teammates using Mixed Reality and Head-Mounted Displays. The architecture has been developed focusing on its modularity and re-usability aspects. Both binaries and source code are available, enabling researchers and companies to adopt the proposed architecture as a standalone solution or to integrate it in more comprehensive implementations. Due to its scalability, the proposed architecture can be easily employed to develop shared Mixed Reality experiences involving multiple robots and human teammates in complex collaborative scenarios.Comment: 6 pages, 3 figures, accepted for publication in the proceedings of the 32nd IEEE International Conference on Robot and Human Interactive Communication (RO-MAN

    Statistical evaluation of the production of urea fertilizer-multiwalled carbon nanotubes using Plackett Burman experimental design

    Get PDF
    Abstract Plant growth rate is significantly dependent on application of nitrogenous fertilizer which mainly contributed by urea fertilizer (UF). Nanotechnology advancements in nutrition strategies for plants have attempted to assist plant nutrition for efficient plant growth. The development of carbon nanomaterials (NMs) including Multi-walled carbon nanotubes (MWNTs) in conjunction with the advancement in biotechnology has expanded their application area of in the field of agriculture. The aim of the work is to identify the significant process parameters to attach urea fertilizer (UF) onto MWNTs. The UF-MWNTs was than characterized optically and chemically to confirm their bonding. Comparison study was also conducted between UF-MWNTs and UF-functionalized {MWNTs} on total N content bonding to the MWNTs. The surface functional groups produced from functionalization process are essential for further modification of {MWNTs} and facilitate the separation of nanotube bundles into individual tubes. Optical, vibrational spectroscopy and chemical characterization were conducted on the samples using TEM, FT-IR and total N analysis confirmed the successful bonding of urea onto MWNTs. Plackett-Burman Experimental Design showed, two out of nine investigated parameters (amount of functionalized {MWNTs} and percentage of functionalization) were found significant in producing successful attachment of {UF} onto functionalized {MWNTs} (fMWNTs)

    Urea functionalized multiwalled carbon nanotubes as efficient nitrogen delivery system for rice

    Get PDF
    This paper utilized urea functionalized multiwalled carbon nanotubes fertilizer as plant nutrition for rice to understand fully their mechanism of interaction. Surface modification of multiwalled carbon nanotubes was treated by nitric acid at different reflux times. The individual and interaction effects between the design factors of functionalized multiwalled carbon nanotube amount and functionalization reflux time with the corresponding responses of nitrogen uptake and nitrogen use efficiency were structured via the Response Surface Methodology based on five-level central composite design. The urea functionalized multiwalled carbon nanotubes fertilizer with optimized 0.5 weight% functionalized multiwalled carbon nanotubes treated at 21 h of reflux time achieve tremendous nitrogen uptake at 1180 mg/pot and NUE up to 96%. The FT-IR results confirm the formation of acidic functional groups of functionalized MWCNTs and UF-MWCNTs. The morphological observation of transmission electron microscopy shows extracellular regions to be the preferred localization of functionalized multiwalled carbon nanotubes in fresh plant root cells independent of their size and geometry. Penetration into the plant cell results in breaching of graphitic tubular structure of functionalized multiwalled carbon nanotubes with their length being shortened until ∼50 nm and diameters becoming thinner until less than 10 nm. The capability to agglomerate after translocation into the plant cells alarms potential cytotoxicity effect of functionalized multiwalled carbon nanotubes in agriculture. These work findings have suggested using urea functionalized multiwalled carbon nanotubes for effective nutrient delivery systems in rice plant. © 2019 Vietnam Academy of Science & Technology

    Characterization Of Phosphoric Acid Biochar Derived From Rubber Wood Sawdust For Enhancement Of Urea Fertilizer Impregnation

    Get PDF
    This paper examines the physiochemical properties of phosphoric acid treated biochar for improvement of urea fertilizer impregnation process. The biochar was heated with phosphoric acid (H3PO4) of 1.5 M (TB1) and 1 M (TB2) concentrations at 80 and 90°C temperature respectively. The treated biochar then were impregnated with 2 wt. % of dissolved urea fertilizer while continuously stirred until the mixture recrystallize to form solid urea impregnated biochar fertilizer (TB1-U and TB2-U). TB1 revealed highest composition of C (66.36%), H (6.53%) and N (1.65%) compared to TB2 composition of C (61.84%), H (4.60%) and N (1.06%). FT-IR results indicated the presence of C-O stretch functional group at 1200 cm−1 to 900cm−1 wavelength and the presence of aromatic ring (C=O) stretching vibration at 1590cm−1-1550cm-1 wavelength revealed chemical reaction occurred due to phosphoric acid treatment. The microporosity results display more micropores formation on the sample surfaces, thus provide higher surface area possible for urea molecule to be impregnated. SEM-EDX exposed qualitatively and quantitatively the presence of 43% N on TB1-U surfaces compared with slightly lower at 42wt% of N on TB2-U surface evidenced the effectiveness of phosphoric acid treatment on enhancement of the biochar specific surface area to be impregnated with urea for nutrient retained

    Rheological Properties of Urea-CaLS Mixture for Urea Fertilizer Granulation

    Get PDF
    The rheological properties of feedstock for granulation process are important in controlling the parameters throughout the process. This study identifies the type of fluid that mixtures of Urea and Calcium Lignosulfonates (CaLS) possessed through the viscosity profiles using a parallel plate rheometer. The viscosity behavior of mixtures with varied weight percentages (wt %) of CaLS in urea solution were analysed. Results identified that the mixtures show shear thickening behavior of non-Newtonian fluid. It is also observed that the increases of CaLS content increase the viscosity of the mixtures. Moreover, the mixture with 50 % CaLS addition is found not suitable for further investigation as its viscosity is too high (3.450-6.773 Pa.s at zero shear rate) compared to molten urea (0.002 Pa.s)

    Optimization of Phosphoric Acid Treatment Biochar using Response Surface Method

    Get PDF
    Biochar is derived from the crop residue as a multifunctional materials for agricultural applications and as a soil enhancer to improve soil fertility. The physical and chemical properties of biochar are improved via phosphoric acid treatment. The aim of this study is to optimize the acid treatment of biochar for two factor; 1) concentration of phosphoric acid and 2) heating temperature via Response Surface Methodology (RSM) by using Design Expert 10 software. A set of 11 experiments were carried out based on Central Composite Design (CCD) with three repetitions at center point. Hence, the responses were set in two factors; 1) pH and 2) negative surface charge. The biochar produced from slow pyrolysis process of rubber wood sawdust (RWSD) in a horizontal tube furnace heated at 5⁰C/minute from room temperature to maximum temperature of 400⁰C with holding time of 1 hour. Characterization of treated biochar was performed using Scanning Electron Microscopy (SEM) and SEM with EDX. Analysis of variance of the pH and negative surface charge indicated that the selected quartic model was significant with p-value of <0.05. Predicted parameters to obtain the maximum negative surface charge were 1 Mol of acid concentration and 85⁰C of heating temperature with desirability of 98%

    Thermal Analysis Of Carbon Fibre Reinforced Polymer Decomposition

    Get PDF
    The increasing number of carbon fibers reinforced polymer (CFRP) waste disposed of in landfills is creating environmental concerns due to the potential release of toxic by-products and the need for recycling. This research work investigates the influence of atmosphere (single and combination of nitrogen and oxygen) and heating rate (5 and 10 °C min-1) on the thermal decomposition of CFRP to recover the reclaimed-cf The samples were heated up to 420 °C in a nitrogen atmosphere followed by heating in the oxygen atmosphere from 420 °C until the final heating temperature at different heating rates. The thermal decomposition behavior of the CFRP waste was compared by thermogravimetric analysis (TGA). Morphological, chemical and structural analysis of reclaimed-CF was performed using SEM, FT-IR and Raman spectroscopy respectively. A nitrogen atmosphere was significance at the early temperature (<420 °C) to decompose smaller molecules of epoxy resin components, while oxygen atmosphere is needed to achieve a complete separation of reclaimed-CF from their matrix. Thermal decomposition at lower heating rate (5 °C min-1) was found efficiently to eliminate the complex epoxy resin and retain the structure of reclaimed-cf The particular thermal decomposition technique that leads to a lower final heating temperature (540 °C) is present to recover valuable reclaimed-CF from complex CFRP industrial waste
    corecore